Efficiently finding low-sum copies of spanning forests in zero-sum complete graphs via conditional expectation

نویسندگان

چکیده

For a fixed positive ϵ, we show the existence of constant Cϵ with following property: Given ±1-edge-labeling c:E(Kn)→{−1,1} complete graph Kn c(E(Kn))=0, and spanning forest F maximum degree Δ, one can determine in polynomial time an isomorphic copy F′ |c(E(F′))|≤34+ϵΔ+Cϵ. Our approach is based on method conditional expectation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-Sum Flows in Regular Graphs

For an undirected graph G, a zero-sum flow is an assignment of non-zero real numbers to the edges, such that the sum of the values of all edges incident with each vertex is zero. It has been conjectured that if a graph G has a zero-sum flow, then it has a zero-sum 6-flow. We prove this conjecture and Bouchet’s Conjecture for bidirected graphs are equivalent. Among other results it is shown that...

متن کامل

Zero-Sum Flow Numbers of Regular Graphs

As an analogous concept of a nowhere-zero flow for directed graphs, we consider zero-sum flows for undirected graphs in this article. For an undirected graph G, a zero-sum flow is an assignment of nonzero integers to the edges such that the sum of the values of all edges incident with each vertex is zero, and we call it a zero-sum k-flow if the values of edges are less than k. We define the zer...

متن کامل

On zero-sum 6-flows of graphs

Article history: Received 20 October 2008 Accepted 21 January 2009 Available online 6 March 2009 Submitted by R.A. Brualdi AMS classification: 05C20 05C50 05C78

متن کامل

Super Pair Sum Labeling of Graphs

Let $G$ be a graph with $p$ vertices and $q$ edges. The graph $G$ is said to be a super pair sum labeling if there exists a bijection $f$ from $V(G)cup E(G)$ to ${0, pm 1, pm2, dots, pm (frac{p+q-1}{2})}$ when $p+q$ is odd and from $V(G)cup E(G)$ to ${pm 1, pm 2, dots, pm (frac{p+q}{2})}$ when $p+q$ is even such that $f(uv)=f(u)+f(v).$ A graph that admits a super pair sum labeling is called a {...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2023

ISSN: ['1872-6771', '0166-218X']

DOI: https://doi.org/10.1016/j.dam.2022.12.014